No Nerdologia Ensina de hoje, vamos ver para onde vai a evolução daqui em diante.

Apresentação:

Roteiro:

Apoio:

Edição e Arte:

SAIBA MAIS

FONTES

  • Ehrenfreund, P., & Charnley, S. B. (2000). Organic molecules in the interstellar medium, comets, and meteorites: a voyage from dark clouds to the early Earth. Annual Review of Astronomy and Astrophysics, 38(1), 427-483.
  • Lane, N. (2017). Questão vital: Por que a vida é como é? Ed. Rocco, 448 pp.
  • Ménez, B., Pisapia, C., Andreani, M., Jamme, F., Vanbellingen, Q. P., Brunelle, A., … & Réfrégiers, M. (2018). Abiotic synthesis of amino acids in the recesses of the oceanic lithosphere. Nature, 564(7734), 59.
  • Miller, S. L. (1953). A production of amino acids under possible primitive earth conditions. Science, 117(3046), 528-529.
  • Miller, S. L., & Lazcano, A. (1995). The origin of life—did it occur at high temperatures?. Journal of Molecular Evolution, 41(6), 689-692.
  • NOAA. s.d. What is a hydrothermal vent? https://oceanservice.noaa.gov/facts/vents.html
  • Pross, A. (2004). Causation and the origin of life. Metabolism or replication first?. Origins of Life and Evolution of the Biosphere, 34(3), 307-321.
  • Strick, J. E. (2009). Sparks of life: Darwinism and the Victorian debates over spontaneous generation. Harvard University Press.
  • Vázquez-Salazar, A., & Lazcano, A. (2018). Early life: embracing the RNA World. Current Biology, 28(5), R220-R222.
  • Törnroth-Horsefield, S., & Neutze, R. (2008). Opening and closing the metabolite gate. Proceedings of the National Academy of Sciences, 105(50), 19565-19566.
  • Jackson, J. B. (2016). Natural pH gradients in hydrothermal alkali vents were unlikely to have played a role in the origin of life. Journal of molecular evolution, 83(1-2), 1-11.
  • Lane, N. (2017). Questão vital: Por que a vida é como é? Ed. Rocco, 448 pp
  • Martin, D. R., & Matyushov, D. V. (2017). Electron-transfer chain in respiratory complex I. Scientific reports, 7(1), 5495.
  • Martin, W., Baross, J., Kelley, D., & Russell, M. J. (2008). Hydrothermal vents and the origin of life. Nature Reviews Microbiology, 6(11), 805.
  • Mulkidjanian, A. Y., Bychkov, A. Y., Dibrova, D. V., Galperin, M. Y., & Koonin, E. V. (2012). Origin of first cells at terrestrial, anoxic geothermal fields. Proceedings of the National Academy of Sciences, 109(14), E821-E830.
  • Russell, M. J., Hall, A. J., & Martin, W. (2010). Serpentinization as a source of energy at the origin of life. Geobiology, 8(5), 355-371.
  • Weber, K. A., Achenbach, L. A., & Coates, J. D. (2006). Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction. Nature Reviews Microbiology, 4(10), 752.
  • Weiss, M. C., Sousa, F. L., Mrnjavac, N., Neukirchen, S., Roettger, M., Nelson-Sathi, S., & Martin, W. F. (2016). The physiology and habitat of the last universal common ancestor. Nature Microbiology, 1(9), 16116.
  • Ducluzeau, A. L., & Nitschke, W. (2016). When Did Hemes Enter the Scene of Life? On the Natural History of Heme Cofactors and Heme-Containing Enzymes. In Cytochrome Complexes: Evolution, Structures, Energy Transduction, and Signaling (pp. 13-24). Springer, Dordrecht.
  • Fischer, W. W., Hemp, J., & Johnson, J. E. (2015). Manganese and the evolution of photosynthesis. Origins of Life and Evolution of Biospheres, 45(3), 351-357.
  • Fischer, W. W., Hemp, J., & Johnson, J. E. (2016). Evolution of oxygenic photosynthesis. Annual Review of Earth and Planetary Sciences, 44, 647-683.
  • Fujita, Y., Tsujimoto, R., & Aoki, R. (2015). Evolutionary aspects and regulation of tetrapyrrole biosynthesis in cyanobacteria under aerobic and anaerobic environments. Life, 5(2), 1172-1203.
  • Hanada, S. (2016). Anoxygenic Photosynthesis—A photochemical reaction that does not contribute to oxygen reproduction—. Microbes and environments, 31(1), 1-3.
  • Reinbothe, S., Reinbothe, C., Apel, K., & Lebedev, N. (1996). Evolution of chlorophyll biosynthesis—the challenge to survive photooxidation. Cell, 86(5), 703-705.
  • Soo, R. M., Hemp, J., Parks, D. H., Fischer, W. W., & Hugenholtz, P. (2017). On the origins of oxygenic photosynthesis and aerobic respiration in Cyanobacteria. Science, 355(6332), 1436-1440.
  • Robin, Eugene D., and Ronald Wong. “Mitochondrial DNA molecules and virtual number of mitochondria per cell in mammalian cells.” Journal of cellular physiology 136, no. 3 (1988): 507-513.
  • Cole, Logan W. “The evolution of per-cell organelle number.” Frontiers in cell and developmental biology 4 (2016): 85.
  • Park, Song-Young, Jayson R. Gifford, Robert HI Andtbacka, Joel D. Trinity, John R. Hyngstrom, Ryan S. Garten, Nikolaos A. Diakos et al. “Cardiac, skeletal, and smooth muscle mitochondrial respiration: are all mitochondria created equal?.” American Journal of Physiology-Heart and Circulatory Physiology 307, no. 3 (2014): H346-H352.
  • Eme, L. et al. (2017). Archaea and the origin of eukaryotes. Nature Reviews Microbiology 15: 711-23.
  • Fuerst, J. A. (2010). Beyond prokaryotes and eukaryotes: planctomycetes and cell organization. Nature Education, 3(9, Article No. 44), Online.
  • Martin, W., & Müller, M. (1998). The hydrogen hypothesis for the first eukaryote. Nature, 392(6671), 37.
  • Moreira, D., & López-García, P. (1998). Symbiosis between methanogenic archaea and δ-proteobacteria as the origin of eukaryotes: the syntrophic hypothesis. Journal of Molecular Evolution, 47(5), 517-530.
  • Spang, A., Caceres, E. F., & Ettema, T. J. (2017). Genomic exploration of the diversity, ecology, and evolution of the archaeal domain of life. Science, 357(6351), eaaf3883.
  • Zaremba-Niedzwiedzka, K., Caceres, E. F., Saw, J. H., Bäckström, D., Juzokaite, L., Vancaester, E., … & Stott, M. B. (2017). Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature, 541(7637), 353.
  • Robin, E. D., & Wong, R. (1988). Mitochondrial DNA molecules and virtual number of mitochondria per cell in mammalian cells. Journal of cellular physiology, 136(3), 507-513.
  • Cole, L. W. (2016). The evolution of per-cell organelle number. Frontiers in cell and developmental biology, 4, 85.
  • Park, S. Y., Gifford, J. R., Andtbacka, R. H., Trinity, J. D., Hyngstrom, J. R., Garten, R. S., … & Drakos, S. (2014). Cardiac, skeletal, and smooth muscle mitochondrial respiration: are all mitochondria created equal?. American Journal of Physiology-Heart and Circulatory Physiology, 307(3), H346-H352.
  • Auld, S. K., Tinkler, S. K., & Tinsley, M. C. (2016). Sex as a strategy against rapidly evolving parasites. Proceedings of the Royal Society B: Biological Sciences, 283(1845), 20162226.
  • Birdsell, J. A., & Wills, C. (2003). The evolutionary origin and maintenance of sexual recombination: a review of contemporary models. In Evolutionary biology (pp. 27-138). Springer, Boston, MA.
  • Hartfield, M., & Keightley, P. D. (2012). Current hypotheses for the evolution of sex and recombination. Integrative zoology, 7(2), 192-209.
  • Lehtonen, J. et al. (2012). The many costs of sex. Trends in Ecology & Evolution 27(3): 172-8. 
  • Lehtonen, J. & Kokko, H. (2014). Sex. Current Biology 24(8): R305-6
  • Lively, C. M. (1992). Parthenogenesis in a freshwater snail: reproductive assurance versus parasitic release. Evolution, 46(4), 907-913.
  • Michod, R. E., Bernstein, H., & Nedelcu, A. M. (2008). Adaptive value of sex in microbial pathogens. Infection, Genetics and Evolution, 8(3), 267-285.
  • Neiman, M., Lively, C. M., & Meirmans, S. (2017). Why sex? A pluralist approach revisited. Trends in ecology & evolution, 32(8), 589-600.
  • Redfield, R. J. (1993). Evolution of natural transformation: testing the DNA repair hypothesis in Bacillus subtilis and Haemophilus influenzae. Genetics, 133(4), 755-761.
  • Raudaskoski, M., & Kothe, E. (2010). Basidiomycete mating type genes and pheromone signaling. Eukaryotic cell, 9(6), 847-859.
  • Dannemann, M., & Kelso, J. (2017). The contribution of Neanderthals to phenotypic variation in modern humans. The American Journal of Human Genetics, 101(4), 578-589.
  • Koschwanez, John H., Kevin R. Foster, and Andrew W. Murray. “Improved use of a public good selects for the evolution of undifferentiated multicellularity.” Elife 2 (2013): e00367.
  • Ratcliff, William C., R. Ford Denison, Mark Borrello, and Michael Travisano. “Experimental evolution of multicellularity.” Proceedings of the National Academy of Sciences 109, no. 5 (2012): 1595-1600.
  • Herron, Matthew D., Joshua M. Borin, Jacob C. Boswell, Jillian Walker, I-Chen Kimberly Chen, Charles A. Knox, Margrethe Boyd, Frank Rosenzweig, and William C. Ratcliff. “De novo origins of multicellularity in response to predation.” Scientific reports 9, no. 1 (2019): 2328.
  • Ward, P., & Kirschvink, J. (2015). A new history of life: the radical new discoveries about the origins and evolution of life on earth. Bloomsbury Publishing USA.
  • Holland, H. D. (1994). Early Proterozoic atmospheric change. Early Life in Earth.
  • Johnston, D. T., Wolfe-Simon, F., Pearson, A., & Knoll, A. H. (2009). Anoxygenic photosynthesis modulated Proterozoic oxygen and sustained Earth’s middle age. Proceedings of the National Academy of Sciences, 106(40), 16925-16929.
  • El Albani, A., Bengtson, S., Canfield, D. E., Bekker, A., Macchiarelli, R., Mazurier, A., … & Fürsich, F. T. (2010). Large colonial organisms with coordinated growth in oxygenated environments 2.1 Gyr ago. Nature, 466(7302), 100.
  • El Albani, A., Bengtson, S., Canfield, D. E., Riboulleau, A., Bard, C. R., Macchiarelli, R., … & Benzerara, K. (2014). The 2.1 Ga old Francevillian biota: biogenicity, taphonomy and biodiversity. PLoS One, 9(6), e99438.
  • Canfield, D. E., Ngombi-Pemba, L., Hammarlund, E. U., Bengtson, S., Chaussidon, M., Gauthier-Lafaye, F., … & Asael, D. (2013). Oxygen dynamics in the aftermath of the Great Oxidation of Earth’s atmosphere. Proceedings of the National Academy of Sciences, 110(42), 16736-16741.
  • Schneider, D. A., Bickford, M. E., Cannon, W. F., Schulz, K. J., & Hamilton, M. A. (2002). Age of volcanic rocks and syndepositional iron formations, Marquette Range Supergroup: implications for the tectonic setting of Paleoproterozoic iron formations of the Lake Superior region. Canadian Journal of Earth Sciences, 39(6), 999-1012.
  • Han, T. M., & Runnegar, B. (1992). Megascopic eukaryotic algae from the 2.1-billion-year-old Negaunee Iron-Formation, Michigan. Science, 257(5067), 232-235.
  • Wang, Y., Wang, Y., & Du, W. (2016). The long-ranging macroalga Grypania spiralis from the Ediacaran Doushantuo Formation, Guizhou, South China. Alcheringa: An Australasian Journal of Palaeontology, 40(3), 303-312.
  • Bengtson, S., Sallstedt, T., Belivanova, V., & Whitehouse, M. (2017). Three-dimensional preservation of cellular and subcellular structures suggests 1.6 billion-year-old crown-group red algae. PLoS biology, 15(3), e2000735.
  • Bobrovskiy, I., Hope, J. M., Ivantsov, A., Nettersheim, B. J., Hallmann, C., & Brocks, J. J. (2018). Ancient steroids establish the Ediacaran fossil Dickinsonia as one of the earliest animals. Science, 361(6408), 1246-1249.
  • Pacheco, M. L. F., Galante, D., Rodrigues, F., Leme, J. D. M., Bidola, P., Hagadorn, W., … & Marques, A. C. (2015). Insights into the skeletonization, lifestyle, and affinity of the unusual Ediacaran fossil Corumbella. PLoS One, 10(3), e0114219.
  • Ivantsov, A. Y. (2011). Feeding traces of proarticulata—the Vendian metazoa. Paleontological Journal, 45(3), 237-248.
  • Koschwanez, J. H., Foster, K. R., & Murray, A. W. (2013). Improved use of a public good selects for the evolution of undifferentiated multicellularity. Elife, 2, e00367.
  • Ratcliff, W. C., Denison, R. F., Borrello, M., & Travisano, M. (2012). Experimental evolution of multicellularity. Proceedings of the National Academy of Sciences, 109(5), 1595-1600.
  • Herron, M. D., Borin, J. M., Boswell, J. C., Walker, J., Chen, I. C. K., Knox, C. A., … & Ratcliff, W. C. (2019). De novo origins of multicellularity in response to predation. Scientific reports, 9(1), 2328.
  • Foster, J. (2014). Cambrian ocean world: ancient sea life of North America. Indiana University Press.
  • Pacheco, M. L. F., Galante, D., Rodrigues, F., Leme, J. D. M., Bidola, P., Hagadorn, W., … & Marques, A. C. (2015). Insights into the skeletonization, lifestyle, and affinity of the unusual Ediacaran fossil Corumbella. PLoS One, 10(3), e0114219.
  • Warren, L. V., Simões, M. G., Fairchild, T. R., Riccomini, C., Gaucher, C., Anelli, L. E., … & Quaglio, F. (2013). Origin and impact of the oldest metazoan bioclastic sediments. Geology, 41(4), 507-510.
  • Gehling, J. G., & Droser, M. L. (2018). Ediacaran scavenging as a prelude to predation. Emerging Topics in Life Sciences, 2(2), 213-222.
  • Dzik, J. (2007). The Verdun Syndrome: simultaneous origin of protective armour and infaunal shelters at the Precambrian–Cambrian transition. Geological Society, London, Special Publications, 286(1), 405-414.
  • Fedonkin, M. A. (2003). The origin of the Metazoa in the light of the Proterozoic fossil record. Paleontological Research, 7(1), 9-41.
  • Hua, H., Pratt, B. R., & Zhang, L. Y. (2003). Borings in Cloudina shells: complex predator-prey dynamics in the terminal Neoproterozoic. Palaios, 18(4-5), 454-459.
  • Bengtson, S., & Zhao, Y. (1992). Predatorial borings in late Precambrian mineralized exoskeletons. Science, 257(5068), 367-369.
  • Bengtson, S. (2002). Origins and early evolution of predation. The Paleontological Society Papers, 8, 289-318.
  • Becker-Kerber, B., Pacheco, M. L. A. F., Rudnitzki, I. D., Galante, D., Rodrigues, F., & de Moraes Leme, J. (2017). Ecological interactions in Cloudina from the Ediacaran of Brazil: implications for the rise of animal biomineralization. Scientific reports, 7(1), 5482.
  • Murdock, D. J., & Donoghue, P. C. (2011). Evolutionary origins of animal skeletal biomineralization. Cells Tissues Organs, 194(2-4), 98-102.
  • Connolly, Máire A., and David L. Heymann. “Deadly comrades: war and infectious diseases.” The Lancet 360 (2002): s23-s24.
  • Alfageme, A. (2019). “Se não criarmos novos antibióticos, as pessoas morrerão aos 50 ou 60 anos, como antes”. El País https://brasil.elpais.com/brasil/2019/05/23/ciencia/1558635795_212524.html
  • Bennett, J. W., & Chung, K. T. (2001). Alexander Fleming and the discovery of penicillin.
  • Gilchrist, MR. (1998). Disease & Infection in the American Civil War. The American Biology Teacher 60(4): 258-62.
  • Gothwal, R., & Shashidhar, T. (2015). Antibiotic pollution in the environment: a review. Clean-Soil, Air, Water 43: 479–489.
  • OPAS Brasil. (2014). Mais nove antibióticos passam a ter retenção da receita. https://www.paho.org/bra/index.php?option=com_content&view=article&id=4789:mais-nove-antibioticos-passam-a-ter-retencao-de-receita&Itemid=812
  • Sartin, J. S. (1993). Infectious diseases during the Civil War: the triumph of the “Third Army”. Clinical Infectious Diseases, 16(4), 580-584.
  • Tello, A., Austin, B., & Telfer, T. C. (2012). Selective pressure of antibiotic pollution on bacteria of importance to public health. Environmental health perspectives, 120(8), 1100-1106.
  • Yasuhira, K., Tanaka, Y., Shibata, H., Kawashima, Y., Ohara, A., Kato, D. I., … & Negoro, S. (2007). 6-Aminohexanoate oligomer hydrolases from the alkalophilic bacteria Agromyces sp. strain KY5R and Kocuria sp. strain KY2. Appl. Environ. Microbiol., 73(21), 7099-7102.
  • Negoro, S., Taniguchi, T., Kanaoka, M., Kimura, H., & Okada, H. (1983). Plasmid-determined enzymatic degradation of nylon oligomers. Journal of bacteriology, 155(1), 22-31.

Sengupta, S., Chattopadhyay, M. K., & Grossart, H. P. (2013). The multifaceted roles of antibiotics and antibiotic resistance in nature. Frontiers in microbiology, 4, 47.

  • Hamilton, W. D. (1964). The genetical evolution of social behaviour. II. Journal of theoretical biology, 7(1), 17-52.
  • Hamilton, W. D. (1964). The genetical evolution of social behaviour. II. Journal of theoretical biology, 7(1), 17-52.
  • Hare, J. F., & Murie, J. O. (1996). Ground squirrel sociality and the quest for the ‘holy grail’: does kinship influence behavioral discrimination by juvenile Columbian ground squirrels?. Behavioral Ecology, 7(1), 76-81.
  • Silk, J. B. (2002). Kin selection in primate groups. International Journal of Primatology, 23(4), 849-875.
  • Fisher, R. A. (1999). The genetical theory of natural selection: a complete variorum edition. Oxford University Press.
  • Haldane, J. B. (1955). Population genetics. New Biology, 18(1), 34-51.

Bosse, K., Betz, R. C., Lee, Y. A., Wienker, T. F., Reis, A., Kleen, H., … & Nöthen, M. M. (2000). Localization of a gene for syndactyly type 1 to chromosome 2q34-q36. The American Journal of Human Genetics, 67(2), 492-497.

  • Kistler, L., Maezumi, S. Y., De Souza, J. G., Przelomska, N. A., Costa, F. M., Smith, O., … & Morrison, R. R. (2018). Multiproxy evidence highlights a complex evolutionary legacy of maize in South America. Science, 362(6420), 1309-1313.
  • Callaway, E. (2014). The birth of rice. Nature, 514(7524), S58. Gregory, T. Ryan. “Artificial selection and domestication: modern lessons from Darwin’s enduring analogy.” Evolution: Education and Outreach 2, no. 1 (2009): 5.
  • Driscoll, C. A., Macdonald, D. W., & O’Brien, S. J. (2009). From wild animals to domestic pets, an evolutionary view of domestication. Proceedings of the National Academy of Sciences, 106(Supplement 1), 9971-9978.
  • Zeder, M. A. (2015). Core questions in domestication research. Proceedings of the National Academy of Sciences, 112(11), 3191-3198.
  • Hare, B., Wobber, V., & Wrangham, R. (2012). The self-domestication hypothesis: evolution of bonobo psychology is due to selection against aggression. Animal Behaviour, 83(3), 573-585.
  • Steinhardt, M. (2019). Maned Wolves Of Santuario Do Caraça. The Wild Life Diaries https://www.thewildlifediaries.com/maned-wolves-santuario-do-caraca/
  • Smith, C. (2017). Cats Domesticated Themselves, Ancient DNA Shows. National Geographichttps://www.nationalgeographic.com/news/2017/06/domesticated-cats-dna-genetics-pets-science/
  • Grimm, D. (2015). Are Cats Really Wild Animals?. Slatehttps://slate.com/technology/2015/07/cat-domestication-debate-over-hunting-tameness-docility-affection-feral-cats.html
  • Tennenhouse, E. (2019). These fishermen-helping dolphins have their own culture. National Geographic – https://www.nationalgeographic.com/animals/2019/04/dolphins-fishermen-brazil-culture/
  • Northcutt, R. G. (2002). Understanding vertebrate brain evolution. Integrative and comparative biology, 42(4), 743-756.
  • Estienne, Vittoria Luisa. “Tool-use technique for the extraction of underground honey by central African chimpanzees in Loango National Park, Gabon.” PhD diss., Universität Leipzig, 2017.
  • Luncz, L. V., Falótico, T., Pascual-Garrido, A., Corat, C., Mosley, H., & Haslam, M. (2016). Wild capuchin monkeys adjust stone tools according to changing nut properties. Scientific reports, 6, 33089.
  • Wilson, E. O. (2011). Anthill: a novel. WW Norton & Company.
  • Plotnik, J. M., De Waal, F. B., & Reiss, D. (2006). Self-recognition in an Asian elephant. Proceedings of the National Academy of Sciences, 103(45), 17053-17057.
  • Griffin, D. R. (1976). The question of animal awareness: Evolutionary continuity of mental experience. Rockefeller Univ. Press.
  • Ross, M. D., Owren, M. J., & Zimmermann, E. (2009). Reconstructing the evolution of laughter in great apes and humans. Current Biology, 19(13), 1106-1111.
  • Dewsbury, D. A. (2006). Monkey Farm: A History of the Yerkes Laboratories of Primate Biology, Orange Park, Florida, 1930-1965. Bucknell University Press.
  • Kaminski, J., Call, J., & Fischer, J. (2004). Word learning in a domestic dog: evidence for” fast mapping”. Science, 304(5677), 1682-1683.
  • Cantor, M., & Whitehead, H. (2013). The interplay between social networks and culture: theoretically and among whales and dolphins. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1618), 20120340.
  • Hirata, S., & Matsuzawa, T. (2001). Tactics to obtain a hidden food item in chimpanzee pairs (Pan troglodytes). Animal Cognition, 4(3-4), 285-295.
  • Call, J. (2006). Inferences by exclusion in the great apes: the effect of age and species. Animal cognition, 9(4), 393-403.
  • Pokorny, J. J., & de Waal, F. B. (2009). Monkeys recognize the faces of group mates in photographs. Proceedings of the National Academy of Sciences, 106(51), 21539-21543.
  • van Lawick-Goodall, J. (1967). Mother-offspring relationships in free-ranging chimpanzees. Primate ethology, 287-346.
  • Wilfried, E. E. G., & Yamagiwa, J. (2014). Use of tool sets by chimpanzees for multiple purposes in Moukalaba-Doudou National Park, Gabon. Primates, 55(4), 467-472.
  • Fragaszy, D., Izar, P., Visalberghi, E., Ottoni, E. B., & de Oliveira, M. G. (2004). Wild capuchin monkeys (Cebus libidinosus) use anvils and stone pounding tools. American Journal of Primatology: Official Journal of the American Society of Primatologists, 64(4), 359-366.
  • Hunt, G. R., & Gray, R. D. (2004). The crafting of hook tools by wild New Caledonian crows. Proceedings of the Royal Society of London. Series B: Biological Sciences, 271(suppl_3), S88-S90.
  • Koops, K., McGrew, W. C., & Matsuzawa, T. (2013). Ecology of culture: do environmental factors influence foraging tool use in wild chimpanzees, Pan troglodytes verus?. Animal Behaviour, 85(1), 175-185.
  • Pepperberg, I. M., & Carey, S. (2012). Grey parrot number acquisition: The inference of cardinal value from ordinal position on the numeral list. Cognition, 125(2), 219-232.
  • Sheehan, M. J., & Tibbetts, E. A. (2011). Specialized face learning is associated with individual recognition in paper wasps. science, 334(6060), 1272-1275.
  • Anderson, R. C., Mather, J. A., Monette, M. Q., & Zimsen, S. R. (2010). Octopuses (Enteroctopus dofleini) recognize individual humans. Journal of Applied Animal Welfare Science, 13(3), 261-272.
  • Hanlon, R. T., & Messenger, J. B. (2018). Cephalopod behaviour. Cambridge University Press.
  • De Waal, F. (2016). Are we smart enough to know how smart animals are?. WW Norton & Company.
  • Warren, M. (2019). Biggest Denisovan fossil yet spills ancient human’s secrets.
  • Harvati, K., Röding, C., Bosman, A. M., Karakostis, F. A., Grün, R., Stringer, C., … & Gorgoulis, V. G. (2019). Apidima Cave fossils provide earliest evidence of Homo sapiens in Eurasia. Nature, 1.
  • NEVES, W. A., Rangel Jr, M. J., & MURRIETA, R. (2015). Assim caminhou a humanidade. Ciência Hoje. Revista de di.
  • Johanson, D. C., & Edey, M. A. (1996). Lucy: os primórdios da humanidade. Bertrand Brasil.
  • Goulden, M. (2007). Bringing bones to life: How science made Piltdown man human. Science as Culture, 16(4), 333-357.
  • De Groote, I., Flink, L. G., Abbas, R., Bello, S. M., Burgia, L., Buck, L. T., … & Kruszynski, R. (2016). New genetic and morphological evidence suggests a single hoaxer created ‘Piltdown man’. Royal Society open science, 3(8), 160328.
  • Pozzi, L., Hodgson, J. A., Burrell, A. S., Sterner, K. N., Raaum, R. L., & Disotell, T. R. (2014). Primate phylogenetic relationships and divergence dates inferred from complete mitochondrial genomes. Molecular phylogenetics and evolution, 75, 165-183.
  • Williams, B. A., Kay, R. F., & Kirk, E. C. (2010). New perspectives on anthropoid origins. Proceedings of the National Academy of Sciences, 107(11), 4797-4804.
  • Springer, M. S., Meredith, R. W., Gatesy, J., Emerling, C. A., Park, J., Rabosky, D. L., … & Fisher, C. A. (2012). Macroevolutionary dynamics and historical biogeography of primate diversification inferred from a species supermatrix. PloS one, 7(11), e49521.
  • Ni, X., Gebo, D. L., Dagosto, M., Meng, J., Tafforeau, P., Flynn, J. J., & Beard, K. C. (2013). The oldest known primate skeleton and early haplorhine evolution. Nature, 498(7452), 60.
  • Ni, X., Wang, Y., Hu, Y., & Li, C. (2004). A euprimate skull from the early Eocene of China. Nature, 427(6969), 65.
  • Franzen, J. L., Gingerich, P. D., Habersetzer, J., Hurum, J. H., Von Koenigswald, W., & Smith, B. H. (2009). Complete primate skeleton from the middle Eocene of Messel in Germany: morphology and paleobiology. PloS one, 4(5), e5723.
  • Jones, F. W. (1916). Arboreal man. Longmans.
  • Smith, G. E. (1924). Evolution of man: Essays. Oxford University Press, London.
  • Cartmill, M. (1974). Pads and claws in arboreal locomotion. Primate locomotion, 45-83.
  • Sussman, R. W. (1991). Primate origins and the evolution of angiosperms. American Journal of Primatology, 23(4), 209-223.
  • Vignaud, P., Duringer, P., Mackaye, H. T., Likius, A., Blondel, C., Boisserie, J. R., … & Guy, F. (2002). Geology and palaeontology of the Upper Miocene Toros-Menalla hominid locality, Chad. Nature, 418(6894), 152.
  • Senut, B., Pickford, M., Gommery, D., Mein, P., Cheboi, K., & Coppens, Y. (2001). First hominid from the Miocene (Lukeino formation, Kenya). Comptes Rendus de l’Académie des Sciences-Series IIA-Earth and Planetary Science, 332(2), 137-144.
  • Haile-Selassie, Y. (2001). Late Miocene hominids from the middle Awash, Ethiopia. Nature, 412(6843), 178.
  • Brunet, M., Guy, F., Pilbeam, D., Mackaye, H. T., Likius, A., Ahounta, D., … & De Bonis, L. (2002). A new hominid from the Upper Miocene of Chad, Central Africa. Nature, 418(6894), 145.
  • Pérez de los Ríos, M. (2015). The craniodental anatomy of Miocene apes from the Vallès-Penedès Basin (Primates: Hominidae): Implications for the origin of extant great apes.
  • Srivastava, R. P. (2009). Morphology of the Primates and Human Evolution. PHI Learning Pvt. Ltd..
  • Nengo, I., Tafforeau, P., Gilbert, C. C., Fleagle, J. G., Miller, E. R., Feibel, C., … & Mana, S. (2017). New infant cranium from the African Miocene sheds light on ape evolution. Nature, 548(7666), 169.
  • Casanovas-Vilar, I., Alba, D. M., Moyà-Solà, S., Galindo, J., Cabrera, L., Garcés, M., … & Angelone, C. (2008). Biochronological, taphonomical, and paleoenvironmental background of the fossil great ape Pierolapithecus catalaunicus (Primates, Hominidae). Journal of Human Evolution, 55(4), 589-603.
  • Kunimatsu, Y., Nakatsukasa, M., Sawada, Y., Sakai, T., Hyodo, M., Hyodo, H., … & Saneyoshi, M. (2007). A new Late Miocene great ape from Kenya and its implications for the origins of African great apes and humans. Proceedings of the National Academy of Sciences, 104(49), 19220-19225.
  • de Bonis, L., & Melentis, J. (1977). Les Primates hominoïdes du Vallésien de Macédoine (Grèce). Étude de la mâchoire inférieure. Geobios, 10(6), 849-885.
  • Chaimanee, Y., Suteethorn, V., Jintasakul, P., Vidthayanon, C., Marandat, B., & Jaeger, J. J. (2004). A new orang-utan relative from the Late Miocene of Thailand. Nature, 427(6973), 439.
  • Finarelli, J. A., & Clyde, W. C. (2004). Reassessing hominoid phylogeny: evaluating congruence in the morphological and temporal data. Paleobiology, 30(4), 614-651.
  • Isbell, L. A., & Young, T. P. (1996). The evolution of bipedalism in hominids and reduced group size in chimpanzees: alternative responses to decreasing resource availability. Journal of human evolution, 30(5), 389-397.
  • Ko, K. H. (2015). Origins of bipedalism. Brazilian archives of biology and technology, 58(6), 929-934.
  • Ko, K. H. (2016). Origins of human intelligence: The chain of tool-making and brain evolution. Anthropological Notebooks, 22(1).
  • Stout, D., Toth, N., Schick, K., & Chaminade, T. (2008). Neural correlates of Early Stone Age toolmaking: technology, language and cognition in human evolution. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1499), 1939-1949.
  • Stout, D. (2011). Stone toolmaking and the evolution of human culture and cognition. Philosophical Transactions of the Royal Society B: Biological Sciences, 366(1567), 1050-1059.
  • Kivell, T. L., & Schmitt, D. (2009). Independent evolution of knuckle-walking in African apes shows that humans did not evolve from a knuckle-walking ancestor. Proceedings of the National Academy of Sciences, 106(34), 14241-14246.
  • Harcourt‐Smith, W. E., & Aiello, L. C. (2004). Fossils, feet and the evolution of human bipedal locomotion. Journal of Anatomy, 204(5), 403-416.
  • Richmond, B. G., & Jungers, W. L. (2008). Orrorin tugenensis femoral morphology and the evolution of hominin bipedalism. Science, 319(5870), 1662-1665.
  • Lovejoy, C. O., Latimer, B., Suwa, G., Asfaw, B., & White, T. D. (2009). Combining prehension and propulsion: the foot of Ardipithecus ramidus. science, 326(5949), 72-72e8.
  • Lovejoy, C. O., Suwa, G., Spurlock, L., Asfaw, B., & White, T. D. (2009). The pelvis and femur of Ardipithecus ramidus: the emergence of upright walking. Science, 326(5949), 71-71e6.
  • Thorpe, S. K., McClymont, J. M., & Crompton, R. H. (2014). The arboreal origins of human bipedalism. Antiquity, 88(341), 906-914.
  • Brunet, M., Guy, F., Pilbeam, D., Lieberman, D. E., Likius, A., Mackaye, H. T., … & Vignaud, P. (2005). New material of the earliest hominid from the Upper Miocene of Chad. Nature, 434(7034), 752.
  • White, T. D., & Suwa, G. (1987). Hominid footprints at Laetoli: facts and interpretations. American Journal of Physical Anthropology, 72(4), 485-514.
  • Masao, F. T., Ichumbaki, E. B., Cherin, M., Barili, A., Boschian, G., Iurino, D. A., … & Manzi, G. (2016). New footprints from Laetoli (Tanzania) provide evidence for marked body size variation in early hominins. Elife, 5, e19568.
  • Argue, D., Donlon, D., Groves, C., & Wright, R. (2006). Homo floresiensis: microcephalic, pygmoid, Australopithecus, or Homo?. Journal of Human Evolution, 51(4), 360-374.
  • Kubo, D., Kono, R. T., & Kaifu, Y. (2013). Brain size of Homo floresiensis and its evolutionary implications. Proceedings of the Royal Society B: Biological Sciences, 280(1760), 20130338.
  • Davidson, I. (2007). As large as you need and as small as you can. implications of the brain size of Homo floresiensis. In: Schalley, A., Khlentzos, D.(Eds.), Mental States: Evolution, Function, Nature. John Benjamins, Amsderdam, 35-42.
  • Brown, P., Sutikna, T., Morwood, M. J., Soejono, R. P., Saptomo, E. W., & Due, R. A. (2004). A new small-bodied hominin from the Late Pleistocene of Flores, Indonesia. Nature, 431(7012), 1055.
  • Callaway, E. (2017). Oldest Homo sapiens fossil claim rewrites our species’ history. Nature News, 8.
  • Reich, D., Green, R. E., Kircher, M., Krause, J., Patterson, N., Durand, E. Y., … & Maricic, T. (2010). Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature, 468(7327), 1053.
  • Kolodny, O., & Feldman, M. W. (2017). A parsimonious neutral model suggests Neanderthal replacement was determined by migration and random species drift. Nature communications, 8(1), 1040.
  • Staubwasser, M., Drăgușin, V., Onac, B. P., Assonov, S., Ersek, V., Hoffmann, D. L., & Veres, D. (2018). Impact of climate change on the transition of Neanderthals to modern humans in Europe. Proceedings of the National Academy of Sciences, 115(37), 9116-9121.
  • Melchionna, M., Di Febbraro, M., Carotenuto, F., Rook, L., Mondanaro, A., Castiglione, S., … & Diniz-Filho, J. A. F. (2018). Fragmentation of Neanderthals’ pre-extinction distribution by climate change. Palaeogeography, palaeoclimatology, palaeoecology, 496, 146-154.
  • Greenbaum, G., Getz, W. M., Rosenberg, N. A., Feldman, M. W., Hovers, E., & Kolodny, O. (2018). Disease and introgression explain the long-lasting contact zone of Modern Humans and Neanderthals and its eventual destabilization. bioRxiv, 495515.
  • Finlayson, C., Fa, D. A., Finlayson, G., Pacheco, F. G., & Vidal, J. R. (2004). Did the moderns kill off the Neanderthals? A reply to F. d’Errico and Sánchez Goñi. Quaternary Science Reviews, 23(9-10), 1205-1209.
  • Carnieri, E. (2006). Who killed the Neanderthals?. Human Evolution, 21(3-4), 337-340.
  • Harvati, K., Frost, S. R., & McNulty, K. P. (2004). Neanderthal taxonomy reconsidered: implications of 3D primate models of intra-and interspecific differences. Proceedings of the National Academy of Sciences, 101(5), 1147-1152.
  • Appenzeller, T. (2013). Neanderthal culture: Old masters. Nature News, 497(7449), 302.
  • Kent, L. (2016). Health-related care for the Neanderthal Shanidar 1. ANU Undergraduate Research Journal, 8, 83-91.
  • Albert, R. M., Berna, F., & Goldberg, P. (2012). Insights on Neanderthal fire use at Kebara Cave (Israel) through high resolution study of prehistoric combustion features: Evidence from phytoliths and thin sections. Quaternary International, 247, 278-293.
  • Spikins, P., Needham, A., Tilley, L., & Hitchens, G. (2018). Calculated or caring? Neanderthal healthcare in social context. World Archaeology, 50(3), 384-403.
  • Henry, A. G. (2017). Neanderthal cooking and the costs of fire. Current Anthropology, 58(S16), S329-S336.
  • Hardy, B. L. (2004). Neanderthal behaviour and stone tool function at the Middle Palaeolithic site of La Quina, France. Antiquity, 78(301), 547-565.
  • Krings, M., Stone, A., Schmitz, R. W., Krainitzki, H., Stoneking, M., & Pääbo, S. (1997). Neandertal DNA sequences and the origin of modern humans. cell, 90(1), 19-30.
  • Green, R. E., Krause, J., Briggs, A. W., Maricic, T., Stenzel, U., Kircher, M., … & Hansen, N. F. (2010). A draft sequence of the Neandertal genome. science, 328(5979), 710-722.
  • Prüfer, K., Racimo, F., Patterson, N., Jay, F., Sankararaman, S., Sawyer, S., … & Li, H. (2014). The complete genome sequence of a Neanderthal from the Altai Mountains. Nature, 505(7481), 43.
  • Prüfer, K., de Filippo, C., Grote, S., Mafessoni, F., Korlević, P., Hajdinjak, M., … & Reher, D. (2017). A high-coverage Neandertal genome from Vindija Cave in Croatia. Science, 358(6363), 655-658.
  • Lohse, K., & Frantz, L. A. (2014). Neandertal admixture in Eurasia confirmed by maximum-likelihood analysis of three genomes. Genetics, 196(4), 1241-1251.
  • Vernot, B., & Akey, J. M. (2014). Resurrecting surviving Neandertal lineages from modern human genomes. Science, 343(6174), 1017-1021.
  • Simonti, C. N., Vernot, B., Bastarache, L., Bottinger, E., Carrell, D. S., Chisholm, R. L., … & Li, R. (2016). The phenotypic legacy of admixture between modern humans and Neandertals. Science, 351(6274), 737-741.
  • Browning, S. R., Browning, B. L., Zhou, Y., Tucci, S., & Akey, J. M. (2018). Analysis of human sequence data reveals two pulses of archaic Denisovan admixture. Cell, 173(1), 53-61.
  • Mondal, M., Bertranpetit, J., & Lao, O. (2019). Approximate Bayesian computation with deep learning supports a third archaic introgression in Asia and Oceania. Nature communications, 10(1), 246.
  • Huerta-Sánchez, E., Jin, X., Bianba, Z., Peter, B. M., Vinckenbosch, N., Liang, Y., … & Wang, B. (2014). Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA. Nature, 512(7513), 194.
  • Racimo, F., Sankararaman, S., Nielsen, R., & Huerta-Sánchez, E. (2015). Evidence for archaic adaptive introgression in humans. Nature Reviews Genetics, 16(6), 359.
  • Wolf, A. B., & Akey, J. M. (2018). Outstanding questions in the study of archaic hominin admixture. PLoS genetics, 14(5), e1007349.
  • Hašová, M., Crhák, T., Šafránková, B., Dvořáková, J., Muthný, T., Velebný, V., & Kubala, L. (2011). Hyaluronan minimizes effects of UV irradiation on human keratinocytes. Archives of dermatological research, 303(4), 277.
  • Ritchie, H. & Roser, M. (2016). Land Use. Our World in Data https://ourworldindata.org/land-use#land-use-over-the-long-run
  • Johnson, C. (2018). Living Planet Report 2018. World Wild Life https://www.worldwildlife.org/pages/living-planet-report-2018

MATERIAL USADO

IMAGENS

Creative Commons

Mais episódios

Nerdstore

PRÉ-VENDA Máscara de Tecido Cthulhu Tentáculos 35,00 Comprar
PRÉ-VENDA Máscara de Tecido Ozob 35,00 Comprar
PRÉ-VENDA Máscara de Tecido Protocolo Bluehand 35,00 Comprar
PRÉ-VENDA Máscara de Tecido TESTEMUNHEM 35,00 Comprar